Fair Division with Subsidy

Mashbat Suzuki

AJCAI 2022
Perth, Australia

Quick overview of "Realm of Fair Division"

Fair Allocation of Indivisible Goods

Set of Agents

$$
N=\{1,2, \ldots, n\}
$$

Set of Items

$$
M=\{1,2, \ldots, m\}
$$

Fair Allocation of Indivisible Goods

Set of Agents
 $$
N=\{1,2, \ldots, n\}
$$

Set of Items

$$
M=\{1,2, \ldots, m\}
$$

Agent Preferences over the set of items are modelled using a
"valuation function"

$$
u_{i}: 2^{M} \rightarrow \mathbb{R}_{+}
$$

$u_{i}(S) \quad$ Represents how much agent i value the bundle S of items

Different types of valuation functions

-Additive
-Submodular
-Subadditive
-Supermodular

$$
u_{i}(S)=\sum_{j \in S} u_{i}(j)
$$

$$
u_{i}(S \cup T)+u_{i}(S \cap T) \leq u_{i}(S)+u_{i}(T) \quad \forall S, T \subseteq M
$$

$$
u_{i}(S \cup T) \leq u_{i}(S)+u_{i}(T) \quad \forall S, T \subseteq M
$$

$u_{i}(S \cup T)+u_{i}(S \cap T) \geq u_{i}(S)+u_{i}(T) \quad \forall S, T \subseteq M$

Different types of valuation functions

-Additive

-Submodular

-Subadditive
-Supermodular

$$
u_{i}(S)=\sum_{j \in S} u_{i}(j)
$$

$$
u_{i}(S \cup T)+u_{i}(S \cap T) \leq u_{i}(S)+u_{i}(T) \quad \forall S, T \subseteq M
$$

$$
u_{i}(S \cup T) \leq u_{i}(S)+u_{i}(T) \quad \forall S, T \subseteq M
$$

$$
u_{i}(S \cup T)+u_{i}(S \cap T) \geq u_{i}(S)+u_{i}(T) \quad \forall S, T \subseteq M
$$

Different types of valuation functions

-Additive
-Submodular
-Subadditive
-Supermodular

$$
u_{i}(S)=\sum_{j \in S} u_{i}(j)
$$

$$
u_{i}(S \cup T)+u_{i}(S \cap T) \leq u_{i}(S)+u_{i}(T) \quad \forall S, T \subseteq M
$$

$$
u_{i}(S \cup T) \leq u_{i}(S)+u_{i}(T) \quad \forall S, T \subseteq M
$$

$$
u_{i}(S \cup T)+u_{i}(S \cap T) \geq u_{i}(S)+u_{i}(T) \quad \forall S, T \subseteq M
$$

Different types of valuation functions

-Additive
-Submodular
-Subadditive
-Supermodular

$$
u_{i}(S)=\sum_{j \in S} u_{i}(j)
$$

$$
u_{i}(S \cup T)+u_{i}(S \cap T) \leq u_{i}(S)+u_{i}(T) \quad \forall S, T \subseteq M
$$

$$
u_{i}(S \cup T) \leq u_{i}(S)+u_{i}(T) \quad \forall S, T \subseteq M
$$

$$
u_{i}(S \cup T)+u_{i}(S \cap T) \geq u_{i}(S)+u_{i}(T) \quad \forall S, T \subseteq M
$$

Allocation $A=\left(A_{1}, \cdots, A_{n}\right)$ is a partition of the item set into n sets

Allocation $A=\left(A_{1}, \cdots, A_{n}\right)$ is a partition of the item set into n sets

General goal = Find "fair" allocations

Quintessential Notion of Fairness

Given an allocation A, agent i envy agent j if $u_{i}\left(A_{i}\right)<u_{i}\left(A_{j}\right)$

Quintessential Notion of Fairness

Given an allocation A, agent i envy agent j if $\quad u_{i}\left(A_{i}\right)<u_{i}\left(A_{j}\right)$
Agent i strictly prefers agent j 's bundle to her own bundle

Quintessential Notion of Fairness

An allocation A is envy-free (EF) if

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j}\right) \quad \forall i, j \in N
$$

Quintessential Notion of Fairness

An allocation A is envy-free (EF) if

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j}\right) \quad \forall i, j \in N
$$

Example:

100\$

190\$
120\$
60\$

Quintessential Notion of Fairness

An allocation A is envy-free (EF) if

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j}\right) \quad \forall i, j \in N
$$

Example:

190\$

60\$

Quintessential Notion of Fairness

An allocation A is envy-free (EF) if

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j}\right) \quad \forall i, j \in N
$$

Example:

Not envy-free!

190\$

60\$

Quintessential Notion of Fairness

An allocation A is envy-free (EF) if

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j}\right) \quad \forall i, j \in N
$$

Example:

100\$

90\$

120\$
60\$

Quintessential Notion of Fairness

An allocation A is envy-free (EF) if

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j}\right) \quad \forall i, j \in N
$$

Example:

100\$

Not envy-free!

Lisa envies Bart!

Quintessential Notion of Fairness

An allocation A is envy-free (EF) if

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j}\right) \quad \forall i, j \in N
$$

Example:

100\$

120\$
60\$
more envy! Its an envy-free allocation

Envy-Free allocations do not always exist !

Envy-Free allocations do not always exist !

Consider two agents and a single indivisible good!

Envy-Free allocations do not always exist !

Theorem: Checking whether there exist an EF allocation is NP -hard

Relaxations of Envy-Freeness

- An allocation A is Envy-Free up to One Item (EF1) if for each $i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for some } g \in A_{j}
$$

Relaxations of Envy-Freeness

- An allocation A is Envy-Free up to One Item (EF1) if for each $i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for some } g \in A_{j}
$$

- An allocation A is Envy-Free up to Any Item (EFX) if for each $\quad i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for all } g \in A_{j}
$$

- An allocation A is Envy-Free up to One Item (EF1) if for each $i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for some } g \in A_{j}
$$

- An allocation A is Envy-Free up to Any Item (EFX) if for each $i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for all } g \in A_{j}
$$

$$
E F \Rightarrow E F X \Rightarrow E F 1
$$

- An allocation A is Envy-Free up to One Item (EF1) if for each $i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for some } g \in A_{j}
$$

- An allocation A is Envy-Free up to Any Item (EFX) if for each $i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for all } g \in A_{j}
$$

$$
E F \Rightarrow E F X \Rightarrow E F 1
$$

190\$

60\$

- An allocation A is Envy-Free up to One Item (EF1) if for each $i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for some } g \in A_{j}
$$

- An allocation A is Envy-Free up to Any Item (EFX) if for each $i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for all } g \in A_{j}
$$

$$
E F \Rightarrow E F X \Rightarrow E F 1
$$

EF1 but NOT EFX

- An allocation A is Envy-Free up to One Item (EF1) if for each $i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for some } g \in A_{j}
$$

- An allocation A is Envy-Free up to Any Item (EFX) if for each $i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for all } g \in A_{j}
$$

$$
E F \Rightarrow E F X \Rightarrow E F 1
$$

100\$

90\$

120\$

- An allocation A is Envy-Free up to One Item (EF1) if for each $\quad i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for some } g \in A_{j}
$$

- An allocation A is Envy-Free up to Any Item (EFX) if for each $i, j \in N$

$$
u_{i}\left(A_{i}\right) \geq u_{i}\left(A_{j} \backslash g\right) \text { for all } g \in A_{j}
$$

$$
E F \Rightarrow E F X \Rightarrow E F 1
$$

100\$

90\$
EFX but NOT EF

120\$

"Arguably, EFX is the best fairness analog of envy-freeness of indivisible items." Caragiannis et al

$n=2$	$n=3$	$n \geq 4$		
EFX is too hard!	You divide, I choose. Often called "Cut-n-Choose"	Very complicated existence proof!		Existence
:---:				
unknown!				
A major open				
problem in fair				
division				

"Arguably, EFX is the best fairness analog of envy-freeness of indivisible items." Caragiannis et al

What about EF1 allocations?

Common Algorithms for EF1 Allocations

-Round Robin
Arbitrary order the agents and let each agents pick their favourite

- Additive Valuations items among the unallocated items
-Maximize Nash Social Welfare

$$
\mathrm{MNW}=\max _{A} \prod_{i=1}^{n} u_{i}\left(A_{i}\right)
$$

Common Algorithms for EF1 Allocations

- Additive Valuations
-Round Robin
Arbitrary order the agents and let each agents pick their favourite items among the unallocated items
-Maximize Nash Social Welfare

$$
\mathrm{MNW}=\max _{A} \prod_{i=1}^{n} u_{i}\left(A_{i}\right)
$$

> -Envy Cycle Elimination

- General Valuations

Lipton, Markakis, Mossel, and Saberi (2004)

However EF1 allocations are often too weak!

	1	2	3			m/2		
des	m \$	1 \$	1 \$	1 \$	1 \$	1 \$		\$
	m \$	1 \$	1 \$	1 \$	1 \$	1 \$		\$

However EFı allocations are often too weak!

However EF1 allocations are often too weak!

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & \ldots . & \mathrm{m} / 2 & \mathrm{~m} / 2+1 & \ldots . . & \mathrm{m}
\end{array}
$$

$\mathrm{m} \$$	$1 \$$	$1 \$$	$1 \$$	\cdots	$1 \$$	$1 \$$	\cdots	$1 \$$

This is an EF1 allocation! But it is clearly not "fair"

Can we find EF allocation by introducing "Money"?

Eric Maskin $\quad 2007$ Nobel Prize in Economics

-0••
$\because \cdot 0 \cdot \boldsymbol{\bullet} \cdot \boldsymbol{0}$

Can we find EF allocation by introducing "Money"?

Eric Maskin $\quad 2007$ Nobel Prize
in Economics

$\square \cdot \boldsymbol{0}$

Can we find envy-free allocations by introducing "small" amounts of money?

What is it mean to be envy-free in the presence of money (homogenous divisible good)?

What is it mean to be envy-free in the presence of money (homogenous divisible good)?

An allocation with payment (A, p) is envy-free if

$$
u_{i}\left(A_{i}\right)+p_{i} \geq u_{i}\left(A_{j}\right)+p_{j} \quad \forall i, j \in N
$$

What is it mean to be envy-free in the presence of money (homogenous divisible good)?

An allocation with payment (A, p) is envy-free if

$$
u_{i}\left(A_{i}\right)+p_{i} \geq u_{i}\left(A_{j}\right)+p_{j} \quad \forall i, j \in N
$$

"No agent envies someone else's bundle plus money more than the bundle plus money allocated to themselves"

What is it mean to be envy-free in the presence of money (homogenous divisible good) ?

An allocation with payment (A, p) is envy-free if

$$
u_{i}\left(A_{i}\right)+p_{i} \geq u_{i}\left(A_{j}\right)+p_{j} \quad \forall i, j \in N
$$

"No agent envies someone else's bundle plus money more than the bundle plus money allocated to themselves"

For simplicity we assume that the marginal value of each item is at most one dollar!
This can be acheived simply by uniformly scaling the valuation

Brief History of Fair Division with Subsidy Problem

Theorem (Maskin 86'):
In the n agent, n item, unit demand setting, envy-free allocation exists with subsidy at most $\mathrm{n}-1$ dollars

Brief History of Fair Division with Subsidy Problem

Theorem (Maskin 86'):
In the n agent, n item, unit demand setting, envy-free allocation exists with subsidy at most $\mathrm{n}-1$ dollars

Variations of the same problem (n item setting) were studied by Svensson('83), Tadenuma and Thompson ('93), Aragones ('93), Klijn ('oo)

Brief History of Fair Division with Subsidy Problem

Theorem (Maskin 86'):
In the n agent, n item, unit demand setting, envy-free allocation exists with subsidy at most $\mathrm{n}-1$ dollars

Variations of the same problem (n item setting) were studied by Svensson('83), Tadenuma and Thompson ('93), Aragones ('93), Klijn ('oo)

Theorem (Halpern, Shah 19'):
For m-item and n -agent setting with additive valuations, envy-free allocation always exist whose subsidy is at most $\mathrm{m}(\mathrm{n}-1)$

Tight Subsidy Bounds for Additive Valuations

Theorem (Brustle, Dippel, Narayan, Suzuki, Vetta 20'): For additive valuations, there is a polynomial time computable envy-free allocation with subsidy payments (A,p) such that

1) Each agent gets at most one dollar of subsidy
2) Allocation A is balanced
3) Allocation A is $E F F_{1}$

Iterated Max Weight Matching Algorithm

Weighted Complete
Bipartite Graph

$$
G=K_{n, m}
$$

Edge Weights

$$
w_{i j}=u_{i}(j) \quad \forall(i, j) \in E\left(K_{n, m}\right)
$$

Repeated Max Weight Matching Algorithm
Compute Max Weight Matching Again!

Repeated Max Weight Matching Algorithm

Final Allocation

田

Final Allocation

Although the algorithm itself is simple the analysis of the algorithm is quite involved!

What About Beyond Additive Valuations!

Theorem (Brustle, Dippel, Narayan, Suzuki, Vetta 20'):
For general valuations, there exist an envy-freeable allocation with total subsidy at most $2 \mathrm{n}^{2}$. Given a valuation oracle, this allocation can be computed in polynomial time

Closing the Gap 2n² and $\mathrm{n}-1$

Closing the Gap $2 \mathrm{n}^{2}$ and $\mathrm{n}-1$

- Subsidy of $\mathrm{n}-1$ suffice for binary submodular functions.

Hiromichi Goko, Ayumi Igarashi, Yasushi Kawase, Kazuhisa Makino, Hanna Sumita, Akihisa Tamura, Yu Yokoi, and M. Yokoo. "Fair and truthful mechanism with limited subsidy", 2021.

- Subsidy of $\mathrm{n}-1$ suffice for dichotomous valuations.

Siddharth Barman, Anand Krishna, Y. Narahari,Soumyarup Sadhukhan "Achieving Envy-Freeness with Limited Subsidies under Dichotomous Valuations", 2022.

Closing the Gap $2 \mathrm{n}^{2}$ and $\mathrm{n}-1$

- Subsidy of $\mathrm{n}-1$ suffice for binary submodular functions.

Hiromichi Goko, Ayumi Igarashi, Yasushi Kawase, Kazuhisa Makino, Hanna Sumita, Akihisa Tamura, Yu Yokoi, and M. Yokoo. "Fair and truthful mechanism with limited subsidy", 2021.

- Subsidy of $\mathrm{n}-1$ suffice for dichotomous valuations.

Siddharth Barman, Anand Krishna, Y. Narahari,Soumyarup Sadhukhan "Achieving Envy-Freeness with Limited Subsidies under Dichotomous Valuations", 2022.

Is there an envy-free allocation with subsidy at most $\mathrm{n}-1$ for any valuation function?

Thank You

