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Mixed-Goods Model

Cake Cutting (aka Divisible Goods Allocation)

Agents N = {1, 2, . . . , n} divide cake C = [0, 1]

Agent i has a density function fi : [0, 1] → R≥0.

Given a piece of cake S ⊆ [0, 1], agent i has value ui (S) =
∫
S fi dx .

Allocation: Partition of the cake (C1,C2, . . . ,Cn).

fi

Cake
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Mixed-Goods Model

Cake Cutting (aka Divisible Goods Allocation)

Agents N = {1, 2, . . . , n} divide cake C = [0, 1]

Agent i has a density function fi : [0, 1] → R≥0.

Given a piece of cake S ⊆ [0, 1], agent i has value ui (S) =
∫
S fi dx .

Allocation: Partition of the cake (C1,C2, . . . ,Cn).

Robertson-Webb (RW) model:

Evali (x , y) asks agent i to evaluate the interval [x , y ] and returns the value ui ([x , y ]);
Cuti (x , α) asks agent i to return the leftmost point y such that ui ([x , y ]) = α, or state that
no such point exists.

0 x y 1

α

Evali (x , y) = ?
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Mixed-Goods Model

Fairness

Envy-freeness (EF)

For any pair of agents i , j ,
ui (Ci ) ≥ ui (Cj).

Theorem (Alon [1987] and Aziz and Mackenzie [2016])

An envy-free allocation

always exists;

can be found via a discrete and bounded protocol.
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Mixed-Goods Model

Indivisible Goods Allocation

Agents N = {1, 2, . . . , n} divide indivisible goods M = {1, 2, . . . ,m}
Agent i has ui (g) ≥ 0 for each good g .

Additive utility: ui (M
′) =

∑
g∈M′ ui (g) for each subset of goods M ′.

Allocation: Partition of the goods M = (M1,M2, . . . ,Mn).

Envy-freeness up to one good (EF1)

For any agents i , j , there exists g ∈ Mj such that

ui (Mi ) ≥ ui (Mj \ {g}).

Theorem (Lipton et al. [2004])

An EF1 allocation always exists and can be found in polynomial time.
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Mixed-Goods Model

Mixed-Goods Model

Agents N = {1, 2, . . . , n}

m indivisible goods and a cake

Each agent has

utility function for the indivisible goods;
density function for the cake.

Allocation A = (A1,A2, . . . ,An), where Ai = Mi ∪ Ci

Indivisible goods: (M1,M2, . . . ,Mn)
Cake: (C1,C2, . . . ,Cn)

Utility ui (Ai ) = ui (Mi ) + ui (Ci )
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Mixed-Goods Model

Candidate Fairness Notions

Envy-freeness (EF): No agent envies another.

∀i , j ∈ N, ui (Ai ) ≥ ui (Aj)

Envy-freeness up to one (indivisible) good (EF1): Any envy that an agent has towards
another agent can be eliminated by removing some good from the latter agent’s bundle.

∀i , j ∈ N,∃g ∈ Aj such that ui (Ai ) ≥ ui (Aj \ {g})

EF for divisible goods + EF1 for indivisible goods.

Alice and Bob divide three indivisible goods and two dollars

Ñ ë � K K
Alice 7 5 4 3

K

Bob 7 5 4 3

K

Ñ ë �
Alice � 5 4 3

Bob 7 5 4 3 K K
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Envy-freeness for Mixed Goods (EFM)

Envy-freeness for Mixed Goods (EFM)

Definition (EFM [Bei, Li, Liu, Liu, and Lu, 2021])

For any pair of agents i , j ,

if agent j ’s bundle consists of only indivisible goods, there exists g ∈ Aj such that
ui (Ai ) ≥ ui (Aj \ {g});
otherwise, ui (Ai ) ≥ ui (Aj).

With only divisible goods: EFM reduces to EF.

With only indivisible goods: EFM reduces to EF1.
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Envy-freeness for Mixed Goods (EFM)

EFM Existence

Theorem (Bei, Li, Liu, Liu, and Lu [2021])

EFM allocations always exist for any number of agents and can be found in polynomial time.

Proof Sketch.

Start with an EF1 allocation of indivisible goods.

Iteratively (and carefully) add some cake.

Maintain EFM throughout the process.
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Envy-freeness for Mixed Goods (EFM)

Envy Graph

Definition

A directed graph of agents with

Envy edge: i −→ j if ui (Ai ) < ui (Aj);

Equality edge: i 99K j if ui (Ai ) = ui (Aj).

Ñ � ë
  5 4 1 5

  3 4 4 5

  4 3 3 5

 

Ñ

 

�

 

ë
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Envy-freeness for Mixed Goods (EFM)

Addable Set

Definition

A subset of agents S ⊆ N such that

no envy edge in S ;

no edge from N \ S to S .

Intuition

Add some cake to an addable set (in a “perfect” manner).
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Envy-freeness for Mixed Goods (EFM)

Cake-Adding Phase

Add some cake to the maximal addable set S

Ñ � ë
  5 4 1 5

  3 4 4 5

  4 3 3 5

  Ñ

 �   ë

Perfect allocation [Alon, 1987]

Every agent in N values all |S | pieces equally.

Given an EFM allocation, after a cake-adding phase, the resulting allocation is still EFM.
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Envy-freeness for Mixed Goods (EFM)

Envy Cycle

Definition

A cycle in the envy graph with at least one envy edge.

Intuition

Eliminate an envy cycle by rotating bundles.
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Envy-freeness for Mixed Goods (EFM)

Envy-Cycle-Elimination Phase

 

Ñ

 

�

 

ë

Rotate

Bundles

 

�

 

ë

 

Ñ

Given an EFM allocation, after an envy-cycle-elimination phase, the allocation is still EFM.

What can we do now?
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Envy-freeness for Mixed Goods (EFM)

Connection Between Addable Set and Envy Cycle

Key Lemma [Bei, Li, Liu, Liu, and Lu, 2021]

At any time, there exists either an addable set or an envy cycle.

Always make progress.

The partial allocation is always EFM.

The process always terminates.
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Envy-freeness for Mixed Goods (EFM)

Caveat

A polynomial-time algorithm if we have a perfect allocation orcale for cake cutting.

The perfect allocation oracle cannot be implemented in a bounded time in the
Robertson-Webb model.

Open Question

A bounded (or even finite) EFM protocol in the Robertson-Webb model?
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Envy-freeness for Mixed Goods (EFM)

More Open Questions

EFM with economic efficiency considerations (like Pareto Optimality).

Preliminary results in Bei, Li, Liu, Liu, and Lu [2021]

EFM with both goods and chores (items that yield non-positive utilities).

Recent progress by Bhaskar, Sricharan, and Vaish [2021]

Fair division in the presence of strategic agents.

. . .
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Maximin Share (MMS) Guarantee

Maximin Share (MMS) Guarantee

Definition (MMS [Budish, 2011])

Define the maximin share (MMS) of agent i as

MMSi = max
(P1,P2,...,Pn)

min
j∈[n]

ui (Pj).

Allocation (A1, . . . ,An) is said to satisfy the maximin share (MMS) guarantee if for every
agent i ∈ N,

ui (Ai ) ≥ MMSi .

Ñ � ë v MMS
  0.5 0.5 0 0 0.5 0.5

  0.9 0.2 0.3 0.6 1 1
  1 0.2 0.1 0.7 1 1

Xinhang Lu (UNSW Sydney) Developments in Fair Division: Mixed Goods AJCAI-22 Tutorial, 05 December 2022 19 / 29



Maximin Share (MMS) Guarantee

Maximin Share (MMS) Guarantee

Definition (MMS [Budish, 2011])

Define the maximin share (MMS) of agent i as

MMSi = max
(P1,P2,...,Pn)

min
j∈[n]

ui (Pj).

Allocation (A1, . . . ,An) is said to satisfy the α-approximate MMS guarantee (α-MMS),
for some α ∈ [0, 1], if ∀i ∈ N,

ui (Ai ) ≥ α ·MMSi .

Ñ � ë v MMS
  0.5 0.5 0 0 0.5 0.5

  0.9 0.2 0.3 0.6 1 1
  1 0.2 0.1 0.7 1 1

Xinhang Lu (UNSW Sydney) Developments in Fair Division: Mixed Goods AJCAI-22 Tutorial, 05 December 2022 19 / 29



Maximin Share (MMS) Guarantee

MMS with Indivisible Goods

With indivisible goods, MMS guarantee cannot always be satisfied, but a constant
multiplicative approximation can [Kurokawa, Procaccia, and Wang, 2018].

Better approximation ratio, simpler algorithms, tighter negative example, etc. [Amanatidis
et al., 2017; Garg, McGlaughlin, and Taki, 2019; Barman and Krishnamurthy, 2020;
Ghodsi et al., 2021; Garg and Taki, 2021; Feige, Sapir, and Tauber, 2021] . . .
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Maximin Share (MMS) Guarantee

Research Questions

1 Is the worst-case MMS approximation guarantee with mixed goods the same as that with
only indivisible goods?

✓

2 Given any problem instance, would adding some divisible goods to it always (weakly)
increase the MMS approximation ratio of this instance?

p

3 How to design algorithms that finds allocations with good MMS approximation guarantee?

Theorem (Bei, Liu, Lu, and Wang [2021])

Given any mixed goods problem instance, an α-MMS allocation always exists, where

α = min

{
1,

1

2
+ min

i∈N

{
agent i ’s value for the divisible goods

2 · (n − 1) · agent i ’s maximin share

}}
4 Algorithms with better MMS approximation guarantee ?
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Maximin Share (MMS) Guarantee

Algorithms for Computing Approximate MMS Allocations

High-level Idea

Assign some agent i a bundle with value at least α×MMSi ;

Reduce the problem to a smaller size.

Example (α = 0.75)

Ñ � ë v MMS α-MMS
  0.5 0.5 0 0 0.5 0.5 0.375
  0.9 0.2 0.3 0.6 1 1 0.75
  1 0.2 0.1 0.7 1 1 0.75

Xinhang Lu (UNSW Sydney) Developments in Fair Division: Mixed Goods AJCAI-22 Tutorial, 05 December 2022 22 / 29



Maximin Share (MMS) Guarantee

Algorithm for Homogeneous Cake Ĉ

The Algorithm

Phase 1: Allocate big indivisible goods.

Phase 2: Allocate small indivisible goods and cake Ĉ :
1 ui∗(Ai∗) ≥ α ·MMSi∗ ;
2 For each agent j remaining in N, uj(Ai∗) ≤ MMSj .

Ñ � ë v

p p

MMS α-MMS (1− α)×MMS
  0.5 0.5 0 0 0.5 0.5 0.375 0.125
  0.9 0.2 0.3 0.6 1 1 0.75 0.25
  1 0.2 0.1 0.7 1 1 0.75 0.25

Lemma (Bei, Liu, Lu, and Wang [2021])

Cake Ĉ is enough to be allocated during the algorithm’s run.
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1 ui∗(Ai∗) ≥ α ·MMSi∗ ;
2 For each agent j remaining in N, uj(Ai∗) ≤ MMSj .

Ñ � ë v

p p

Utility α-MMS (1− α)×MMS

  0.5 0.5 0 0 0.5 0.375 0.125

  0.9 0.2 0.3 0.6 0.75 0.75 0.25
  1 0.2 0.1 0.7 1 0.75 0.25

Lemma (Bei, Liu, Lu, and Wang [2021])
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Algorithm for Heterogeneous Cake C

Replace cake C with a homogeneous cake Ĉ such that

ui (Ĉ ) = ui (C ).

Allocate the indivisible goods and homogeneous cake Ĉ using the previous algorithm.
In other words, for each agent i , we have

ui (Mi ∪ Ĉi ) = ui (Mi ) + ui (Ĉi ) ≥ α ·MMSi .

Use an algorithm of Cseh and Fleiner [2020] to allocate cake C in the sense that

ui (Ci ) ≥ ui (Ĉi ).
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ui (Ĉ ) = ui (C ).

Allocate the indivisible goods and homogeneous cake Ĉ using the previous algorithm.
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Wrap-Up

1 Mixed-Goods Model

2 Envy-freeness for Mixed Goods (EFM)

3 Maximin Share (MMS) Guarantee
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Resources

Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, eds. [2016]. Handbook
of Computational Social Choice. Cambridge University Press

Ayumi Igarashi and Warut Suksompong [2019]. Fair Division of Indivisible Items: Asymptotics and
Graph-Theoretic Approaches. Tutorial presented at IJCAI-19. url:
https://www.comp.nus.edu.sg/~warut/ijcai19-tutorial.html

Rupert Freeman and Nisarg Shah [2020]. Recent Advances in Fair Resource Allocation. Tutorial presented
at EC-19, AAAI-20, and AAMAS-20. url:
https://www.cs.toronto.edu/~nisarg/papers/Fair-Division-Tutorial.pdf

Warut Suksompong [2021]. “Constraints in Fair Division”. In: ACM SIGecom Exchanges 19.2, pp. 46–61.
url: https://www.sigecom.org/exchanges/volume_19/2/SUKSOMPONG.pdf

Ayumi Igarashi and Warut Suksompong [2022]. Constraints in Fair Division. Tutorial presented at
IJCAI-22. url: https://www.comp.nus.edu.sg/~warut/ijcai22-tutorial.html

Georgios Amanatidis, Haris Aziz, Georgios Birmpas, Aris Filos-Ratsikas, Bo Li, Hervé Moulin,
Alexandros A. Voudouris, and Xiaowei Wu [2022]. Fair Division of Indivisible Goods: A Survey. arXiv
preprint. url: https://arxiv.org/abs/2208.08782v1
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Cseh, Ágnes and Tamás Fleiner (2020). “The Complexity of Cake Cutting with Unequal Shares”. In: ACM
Transactions on Algorithms 16.3, 29.

Feige, Uriel, Ariel Sapir, and Laliv Tauber (2021). “A Tight Negative Example for MMS Fair Allocations”.
In: Proc. WINE, pp. 355–372.

Garg, Jugal, Peter McGlaughlin, and Setareh Taki (2019). “Approximating Maximin Share Allocations”. In:
Proc. SOSA, 20:1–20:11.

Garg, Jugal and Setareh Taki (2021). “An Improved Approximation Algorithm for Maximin Shares”. In:
Artificial Intelligence 300, 103547.

Ghodsi, Mohammad, MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami
(2021). “Fair Allocation of Indivisible Goods: Improvement”. In: Mathematics of Operations Research 46.3,
pp. 1038–1053.

Kurokawa, David, Ariel D. Procaccia, and Junxing Wang (2018). “Fair Enough: Guaranteeing Approximate
Maximin Shares”. In: Journal of the ACM 65.2, 8.

Lipton, Richard J., Evangelos Markakis, Elchanan Mossel, and Amin Saberi (2004). “On Approximately Fair
Allocations of Indivisible Goods”. In: Proc. EC, pp. 125–131.

Xinhang Lu (UNSW Sydney) Developments in Fair Division: Mixed Goods AJCAI-22 Tutorial, 05 December 2022 28 / 29



Thank You!

Xinhang Lu (UNSW Sydney) Developments in Fair Division: Mixed Goods AJCAI-22 Tutorial, 05 December 2022 29 / 29


	Mixed-Goods Model
	Envy-freeness for Mixed Goods (EFM)
	Maximin Share (MMS) Guarantee

