Developments in Fair Resource Allocation: Fair Division of Mixed Divisible and Indivisible Goods

Haris Aziz Xinhang Lu Mashbat Suzuki Toby Walsh

AJCAI 2022 Tutorial (Part 3) Perth, Australia, 05 December 2022

Motivation

Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

AJCAI-22 Tutorial, 05 December 2022 2 / 29

2 Envy-freeness for Mixed Goods (EFM)

Maximin Share (MMS) Guarantee

Agents $N = \{1, 2, \dots, n\}$ divide cake C = [0, 1]

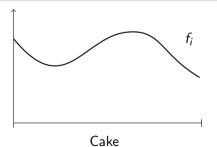
- Agent *i* has a density function $f_i : [0, 1] \to \mathbb{R}_{\geq 0}$.
- Given a piece of cake $S \subseteq [0,1]$, agent *i* has value $u_i(S) = \int_S f_i \, dx$.
- Allocation: Partition of the cake (C_1, C_2, \ldots, C_n) .

Cake

Xinhang Lu (UNSW Sydney)

Agents $N = \{1, 2, \dots, n\}$ divide cake C = [0, 1]

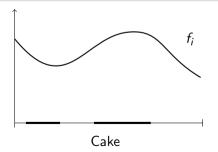
- Agent *i* has a density function $f_i : [0, 1] \to \mathbb{R}_{\geq 0}$.
- Given a piece of cake $S \subseteq [0,1]$, agent *i* has value $u_i(S) = \int_S f_i \, dx$.
- Allocation: Partition of the cake (C_1, C_2, \ldots, C_n) .



Xinhang Lu (UNSW Sydney)

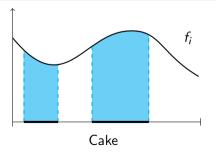
Agents $N = \{1, 2, \dots, n\}$ divide cake C = [0, 1]

- Agent *i* has a density function $f_i : [0, 1] \to \mathbb{R}_{\geq 0}$.
- Given a piece of cake $S \subseteq [0,1]$, agent *i* has value $u_i(S) = \int_S f_i \, dx$.
- Allocation: Partition of the cake (C_1, C_2, \ldots, C_n) .



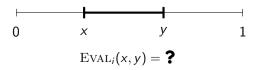
Agents $N = \{1, 2, \dots, n\}$ divide cake C = [0, 1]

- Agent *i* has a density function $f_i : [0, 1] \to \mathbb{R}_{\geq 0}$.
- Given a piece of cake $S \subseteq [0,1]$, agent *i* has value $u_i(S) = \int_S f_i \, dx$.
- Allocation: Partition of the cake (C_1, C_2, \ldots, C_n) .



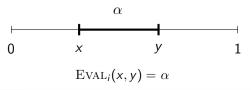
Agents $N = \{1, 2, \dots, n\}$ divide cake C = [0, 1]

- Agent *i* has a density function $f_i : [0, 1] \to \mathbb{R}_{\geq 0}$.
- Given a piece of cake $S \subseteq [0,1]$, agent *i* has value $u_i(S) = \int_S f_i \, dx$.
- Allocation: Partition of the cake (C_1, C_2, \ldots, C_n) .
- Robertson-Webb (RW) model:
 - EVAL_i(x, y) asks agent i to evaluate the interval [x, y] and returns the value $u_i([x, y])$;
 - CUT_i(x, α) asks agent i to return the leftmost point y such that u_i([x, y]) = α, or state that no such point exists.



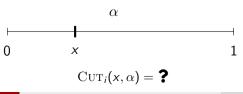
Agents $N = \{1, 2, \dots, n\}$ divide cake C = [0, 1]

- Agent *i* has a density function $f_i : [0, 1] \to \mathbb{R}_{\geq 0}$.
- Given a piece of cake $S \subseteq [0,1]$, agent *i* has value $u_i(S) = \int_S f_i \, dx$.
- Allocation: Partition of the cake (C_1, C_2, \ldots, C_n) .
- Robertson-Webb (RW) model:
 - EVAL_i(x, y) asks agent i to evaluate the interval [x, y] and returns the value $u_i([x, y])$;
 - $CUT_i(x, \alpha)$ asks agent *i* to return the leftmost point *y* such that $u_i([x, y]) = \alpha$, or state that no such point exists.



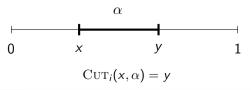
Agents $N = \{1, 2, \dots, n\}$ divide cake C = [0, 1]

- Agent *i* has a density function $f_i : [0, 1] \to \mathbb{R}_{\geq 0}$.
- Given a piece of cake $S \subseteq [0,1]$, agent *i* has value $u_i(S) = \int_S f_i \, dx$.
- Allocation: Partition of the cake (C_1, C_2, \ldots, C_n) .
- Robertson-Webb (RW) model:
 - EVAL_i(x, y) asks agent i to evaluate the interval [x, y] and returns the value $u_i([x, y])$;
 - CUT_i(x, α) asks agent i to return the leftmost point y such that u_i([x, y]) = α, or state that no such point exists.



Agents $N = \{1, 2, \dots, n\}$ divide cake C = [0, 1]

- Agent *i* has a density function $f_i : [0, 1] \to \mathbb{R}_{\geq 0}$.
- Given a piece of cake $S \subseteq [0,1]$, agent *i* has value $u_i(S) = \int_S f_i \, \mathrm{d}x$.
- Allocation: Partition of the cake (C_1, C_2, \ldots, C_n) .
- Robertson-Webb (RW) model:
 - EVAL_i(x, y) asks agent i to evaluate the interval [x, y] and returns the value $u_i([x, y])$;
 - $CUT_i(x, \alpha)$ asks agent *i* to return the leftmost point *y* such that $u_i([x, y]) = \alpha$, or state that no such point exists.



Fairness

Envy-freeness (EF)

For any pair of agents i, j,

$u_i(C_i) \geq u_i(C_j).$

Theorem (Alon [1987] and Aziz and Mackenzie [2016])

An envy-free allocation

- always exists;
- can be found via a discrete and bounded protocol.

Indivisible Goods Allocation

Agents $N = \{1, 2, ..., n\}$ divide indivisible goods $M = \{1, 2, ..., m\}$

- Agent *i* has $u_i(g) \ge 0$ for each good *g*.
- Additive utility: $u_i(M') = \sum_{g \in M'} u_i(g)$ for each subset of goods M'.
- Allocation: Partition of the goods $\mathcal{M} = (M_1, M_2, \dots, M_n)$.

Envy-freeness up to one good (EF1)

For any agents i, j, there exists $g \in M_j$ such that

 $u_i(M_i) \geq u_i(M_j \setminus \{g\}).$

Theorem (Lipton et al. [2004])

An EF1 allocation always exists and can be found in polynomial time.

Xinhang Lu (UNSW Sydney)

Mixed-Goods Model

- Agents $N = \{1, 2, ..., n\}$
- *m* indivisible goods and a cake
- Each agent has utility function for the indivisible goods; density function for the cake.
- Allocation $\mathcal{A} = (A_1, A_2, \dots, A_n)$, where $A_i = M_i \cup C_i$ Indivisible goods: (M_1, M_2, \dots, M_n) Cake: (C_1, C_2, \dots, C_n)
- Utility $u_i(A_i) = u_i(M_i) + u_i(C_i)$

• Envy-freeness (EF): No agent envies another.

 $\forall i, j \in N, u_i(A_i) \geq u_i(A_j)$

• Envy-freeness up to one (indivisible) good (EF1): Any envy that an agent has towards another agent can be eliminated by removing *some* good from the latter agent's bundle.

 $\forall i, j \in N, \exists g \in A_j \text{ such that } u_i(A_i) \geq u_i(A_j \setminus \{g\})$

• Envy-freeness (EF): No agent envies another.

 $\forall i, j \in N, u_i(A_i) \geq u_i(A_j)$

• Envy-freeness up to one (indivisible) good (EF1): Any envy that an agent has towards another agent can be eliminated by removing *some* good from the latter agent's bundle.

$$orall i,j\in \mathcal{N}, \exists g\in \mathcal{A}_j ext{ such that } u_i(\mathcal{A}_i)\geq u_i(\mathcal{A}_j\setminus\{g\})$$

• Envy-freeness (EF): No agent envies another.

 $\forall i, j \in N, u_i(A_i) \geq u_i(A_j)$

• Envy-freeness up to one (indivisible) good (EF1): Any envy that an agent has towards another agent can be eliminated by removing *some* good from the latter agent's bundle.

$$orall i,j\in \mathcal{N}, \exists g\in \mathcal{A}_j ext{ such that } u_i(\mathcal{A}_i)\geq u_i(\mathcal{A}_j\setminus\{g\})$$

• Envy-freeness (EF): No agent envies another.

 $\forall i, j \in N, u_i(A_i) \geq u_i(A_j)$

• Envy-freeness up to one (indivisible) good (EF1): Any envy that an agent has towards another agent can be eliminated by removing *some* good from the latter agent's bundle.

$$orall i,j\in \mathcal{N}, \exists m{g}\in m{A}_j ext{ such that } u_i(m{A}_i)\geq u_i(m{A}_j\setminus\{m{g}\})$$

Envy-freeness for Mixed Goods (EFM)

Definition (EFM [Bei, Li, Liu, Liu, and Lu, 2021])

For any pair of agents i, j,

- if agent j's bundle consists of *only* indivisible goods, there exists $g \in A_j$ such that $u_i(A_i) \ge u_i(A_j \setminus \{g\})$;
- otherwise, $u_i(A_i) \ge u_i(A_j)$.

With only divisible goods: EFM reduces to EF. With only indivisible goods: EFM reduces to EF1.

Envy-freeness for Mixed Goods (EFM)

Definition (EFM [Bei, Li, Liu, Liu, and Lu, 2021])

For any pair of agents i, j,

- if agent j's bundle consists of *only* indivisible goods, there exists $g \in A_j$ such that $u_i(A_i) \ge u_i(A_j \setminus \{g\})$;
- otherwise, $u_i(A_i) \ge u_i(A_j)$.

With only divisible goods: EFM reduces to EF. With only indivisible goods: EFM reduces to EF1.

EFM Existence

Theorem (Bei, Li, Liu, Liu, and Lu [2021])

EFM allocations always exist for any number of agents and can be found in polynomial time.

Proof Sketch.

- Start with an EF1 allocation of indivisible goods.
- Iteratively (and carefully) add some cake.
- Maintain EFM throughout the process.

EFM Existence

Theorem (Bei, Li, Liu, Liu, and Lu [2021])

EFM allocations always exist for any number of agents and can be found in polynomial time.

Proof Sketch.

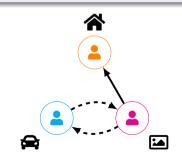
- Start with an EF1 allocation of indivisible goods.
- Iteratively (and carefully) add some cake.
- Maintain EFM throughout the process.

Envy Graph

Definition

A directed graph of agents with

Envy edge: $i \longrightarrow j$ if $u_i(A_i) < u_i(A_j)$; Equality edge: $i \longrightarrow j$ if $u_i(A_i) = u_i(A_j)$.

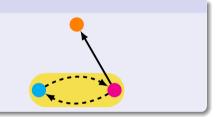


Addable Set

Definition

A subset of agents $S \subseteq N$ such that

- no envy edge in S;
- no edge from $N \setminus S$ to S.



Intuition

Add some cake to an addable set (in a "perfect" manner).

Cake-Adding Phase

Perfect allocation [Alon, 1987]

Every agent in N values all |S| pieces equally.

Given an EFM allocation, after a cake-adding phase, the resulting allocation is still EFM.

Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

AJCAI-22 Tutorial, 05 December 2022 13 / 29

Cake-Adding Phase

Perfect allocation [Alon, 1987]

Every agent in N values all |S| pieces equally.

Given an EFM allocation, after a cake-adding phase, the resulting allocation is still EFM.

Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

AJCAI-22 Tutorial, 05 December 2022 13 / 29

Cake-Adding Phase

Perfect allocation [Alon, 1987]

Every agent in N values all |S| pieces equally.

Given an EFM allocation, after a cake-adding phase, the resulting allocation is still EFM.

Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

AJCAI-22 Tutorial, 05 December 2022 13 / 29

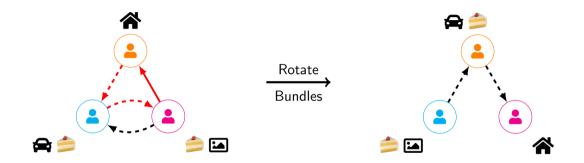
Envy Cycle

Definition

A cycle in the envy graph with at least one *envy* edge.

Intuition

Eliminate an envy cycle by rotating bundles.

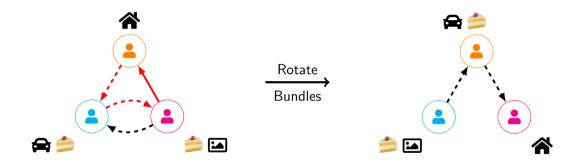


Given an EFM allocation, after an envy-cycle-elimination phase, the allocation is still EFM.

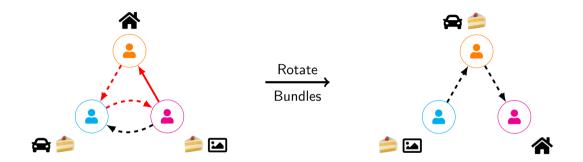
Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

AJCAI-22 Tutorial, 05 December 2022 15 / 29



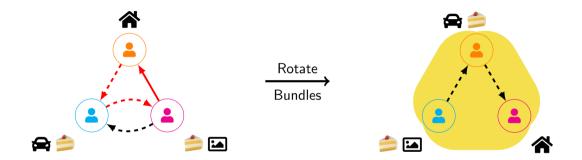
Given an EFM allocation, after an envy-cycle-elimination phase, the allocation is still EFM.



Given an EFM allocation, after an envy-cycle-elimination phase, the allocation is still EFM.

What can we do now?

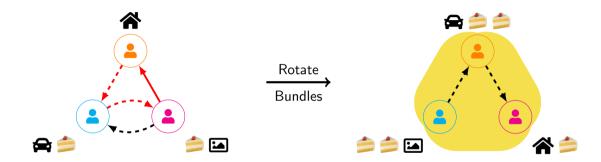
Xinhang Lu (UNSW Sydney)



Given an EFM allocation, after an envy-cycle-elimination phase, the allocation is still EFM.

What can we do now?

Xinhang Lu (UNSW Sydney)



Given an EFM allocation, after an envy-cycle-elimination phase, the allocation is still EFM.

What can we do now?

Xinhang Lu (UNSW Sydney)

Connection Between Addable Set and Envy Cycle

Key Lemma [Bei, Li, Liu, Liu, and Lu, 2021]

At any time, there exists either an addable set or an envy cycle.

- Always make progress.
- The partial allocation is always EFM.
- The process always terminates.

Caveat

- A polynomial-time algorithm if we have a perfect allocation orcale for cake cutting.
- The perfect allocation oracle cannot be implemented in a bounded time in the Robertson-Webb model.

Open Question

A bounded (or even finite) EFM protocol in the Robertson-Webb model?

Caveat

- A polynomial-time algorithm if we have a perfect allocation orcale for cake cutting.
- The perfect allocation oracle cannot be implemented in a bounded time in the Robertson-Webb model.

Open Question

A bounded (or even finite) EFM protocol in the Robertson-Webb model?

More Open Questions

- EFM with economic efficiency considerations (like Pareto Optimality).
 - Preliminary results in Bei, Li, Liu, Liu, and Lu [2021]
- EFM with both goods and chores (items that yield non-positive utilities).
 - Recent progress by Bhaskar, Sricharan, and Vaish [2021]
- Fair division in the presence of strategic agents.

Ο . . .

Maximin Share (MMS) Guarantee

Definition (MMS [Budish, 2011])

• Define the maximin share (MMS) of agent *i* as

$$\mathsf{MMS}_i = \max_{(P_1, P_2, \dots, P_n)} \min_{j \in [n]} u_i(P_j).$$

Allocation (A₁,..., A_n) is said to satisfy the maximin share (MMS) guarantee if for every agent i ∈ N,

$$u_i(A_i) \geq \mathsf{MMS}_i$$

Xinhang Lu (UNSW Sydney)

Maximin Share (MMS) Guarantee

Definition (MMS [Budish, 2011])

• Define the maximin share (MMS) of agent *i* as

$$\mathsf{MMS}_i = \max_{(P_1, P_2, \dots, P_n)} \min_{j \in [n]} u_i(P_j).$$

Allocation (A₁,..., A_n) is said to satisfy the α-approximate MMS guarantee (α-MMS), for some α ∈ [0, 1], if ∀i ∈ N,

$$u_i(A_i) \geq lpha \cdot \mathsf{MMS}_i$$

Xinhang Lu (UNSW Sydney)

MMS with Indivisible Goods

- With indivisible goods, MMS guarantee cannot always be satisfied, but a constant multiplicative approximation can [Kurokawa, Procaccia, and Wang, 2018].
- Better approximation ratio, simpler algorithms, tighter negative example, etc. [Amanatidis et al., 2017; Garg, McGlaughlin, and Taki, 2019; Barman and Krishnamurthy, 2020; Ghodsi et al., 2021; Garg and Taki, 2021; Feige, Sapir, and Tauber, 2021] ...

- Is the worst-case MMS approximation guarantee with mixed goods the same as that with only indivisible goods?
- Given any problem instance, would adding some divisible goods to it always (weakly) increase the MMS approximation ratio of this instance?
- **③** How to design algorithms that finds allocations with good MMS approximation guarantee?

Theorem (Bei, Liu, Lu, and Wang [2021])

Given any mixed goods problem instance, an lpha-MMS allocation always exists, where

$$\alpha = \min\left\{1, \frac{1}{2} + \min_{i \in N} \left\{\frac{\text{agent } i \text{ 's value for the divisible goods}}{2 \cdot (n-1) \cdot \text{agent } i \text{ 's maximin share}}\right\}$$

Igorithms with better MMS approximation guarantee ?

Xinhang Lu (UNSW Sydney)

- Is the worst-case MMS approximation guarantee with mixed goods the same as that with only indivisible goods?
- Given any problem instance, would adding some divisible goods to it always (weakly) increase the MMS approximation ratio of this instance?
- **③** How to design algorithms that finds allocations with good MMS approximation guarantee?

Theorem (Bei, Liu, Lu, and Wang [2021])

Given any mixed goods problem instance, an lpha-MMS allocation always exists, where

$$\alpha = \min\left\{1, \frac{1}{2} + \min_{i \in N}\left\{\frac{\text{agent } i \text{ 's value for the divisible goods}}{2 \cdot (n-1) \cdot \text{agent } i \text{ 's maximin share}}\right\}$$

Igorithms with better MMS approximation guarantee ?

Xinhang Lu (UNSW Sydney)

- Is the worst-case MMS approximation guarantee with mixed goods the same as that with only indivisible goods?
- Given any problem instance, would adding some divisible goods to it always (weakly) increase the MMS approximation ratio of this instance?
- **③** How to design algorithms that finds allocations with good MMS approximation guarantee?

Theorem (Bei, Liu, Lu, and Wang [2021])

Given any mixed goods problem instance, an lpha-MMS allocation always exists, where

$$\alpha = \min\left\{1, \frac{1}{2} + \min_{i \in N} \left\{\frac{\text{agent } i \text{ 's value for the divisible goods}}{2 \cdot (n-1) \cdot \text{agent } i \text{ 's maximin share}}\right\}$$

Igorithms with better MMS approximation guarantee ?

Xinhang Lu (UNSW Sydney)

- Is the worst-case MMS approximation guarantee with mixed goods the same as that with only indivisible goods?
- Given any problem instance, would adding some divisible goods to it always (weakly) increase the MMS approximation ratio of this instance?
- **③** How to design algorithms that finds allocations with good MMS approximation guarantee?

Theorem (Bei, Liu, Lu, and Wang [2021])

Given any mixed goods problem instance, an α -MMS allocation always exists, where

$$\alpha = \min\left\{1, \frac{1}{2} + \min_{i \in N} \left\{\frac{\text{agent i's value for the divisible goods}}{2 \cdot (n-1) \cdot \text{agent i's maximin share}}\right\}\right\}$$

Igorithms with better MMS approximation guarantee

Xinhang Lu (UNSW Sydney)

- Is the worst-case MMS approximation guarantee with mixed goods the same as that with only indivisible goods?
- Given any problem instance, would adding some divisible goods to it always (weakly) increase the MMS approximation ratio of this instance?
- **③** How to design algorithms that finds allocations with good MMS approximation guarantee?

Theorem (Bei, Liu, Lu, and Wang [2021])

Given any mixed goods problem instance, an α -MMS allocation always exists, where

$$\alpha = \min\left\{1, \frac{1}{2} + \min_{i \in N}\left\{\frac{\text{agent i's value for the divisible goods}}{2 \cdot (n-1) \cdot \text{agent i's maximin share}}\right\}\right\}$$

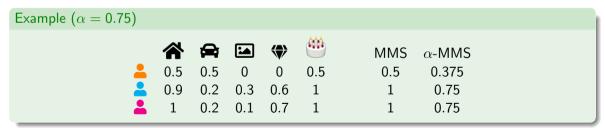
Algorithms with better MMS approximation guarantee ?

Xinhang Lu (UNSW Sydney)

Algorithms for Computing Approximate MMS Allocations

High-level Idea

- Assign some agent *i* a bundle with value at least $\alpha \times MMS_i$;
- Reduce the problem to a smaller size.



The Algorithm

• Phase 1: Allocate big indivisible goods.

• Phase 2: Allocate small indivisible goods and cake \widehat{C} :

3 For each agent j remaining in N, $u_j(A_{i^*}) \leq MMS_j$.

			:	<>>		MMS	lpha-MMS	(1-lpha) imes MMS
-	0.5	0.5	0	0	0.5	0.5	0.375	0.125
2	0.9	0.2	0.3	0.6	1	1	0.75	0.25
-	1	0.2	0.1	0.7	1	1	0.75	0.25

Lemma (Bei, Liu, Lu, and Wang [2021])

Cake C is enough to be allocated during the algorithm's run.

Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

The Algorithm

• Phase 1: Allocate big indivisible goods.

Phase 2: Allocate small indivisible goods and cake C:
1 u_{i*}(A_{i*}) ≥ α · MMS_{i*};
2 For each agent j remaining in N, u_i(A_{i*}) ≤ MMS_i.

		æ	:	<>>	└──── ┤	Utility	$lpha extsf{-MMS}$	(1-lpha) imes MMS
-	0.5	0.5	0	0	0.5	0.5	0.375	0.125
2	0.9	0.2	0.3	0.6	1		0.75	0.25
-	1	0.2	0.1	0.7	1		0.75	0.25

Lemma (Bei, Liu, Lu, and Wang [2021])

Cake \widehat{C} is enough to be allocated during the algorithm's run.

Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

The Algorithm

- Phase 1: Allocate big indivisible goods.
- Phase 2: Allocate small indivisible goods and cake \widehat{C} :
 - $u_{i^*}(A_{i^*}) \geq \alpha \cdot \mathsf{MMS}_{i^*};$
 - **2** For each agent *j* remaining in *N*, $u_j(A_{i^*}) \leq MMS_j$.

				$\langle \!\!\! $	⊢−−−− −	Utility	$lpha extsf{-MMS}$	(1-lpha) imes MMS
	0.5	0.5	0	0		0.5	0.375	0.125
-	0.9	0.2	0.3	0.6	1		0.75	0.25
-	1	0.2	0.1	0.7	1		0.75	0.25

Lemma (Bei, Liu, Lu, and Wang [2021])

Cake \widehat{C} is enough to be allocated during the algorithm's run.

Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

The Algorithm

- Phase 1: Allocate big indivisible goods.
- Phase 2: Allocate small indivisible goods and cake \widehat{C} :
 - $u_{i^*}(A_{i^*}) \geq \alpha \cdot \mathsf{MMS}_{i^*};$
 - **2** For each agent *j* remaining in *N*, $u_j(A_{i^*}) \leq MMS_j$.

				<>>	├ ──── ┤	Utility	α -MMS	(1-lpha) imes MMS
	0.5	0.5	0	0		0.5	0.375	0.125
-	0.9	0.2	0.3	0.6	1		0.75	0.25
-	1	0.2	0.1	0.7	1		0.75	0.25

Lemma (Bei, Liu, Lu, and Wang [2021])

Cake \widehat{C} is enough to be allocated during the algorithm's run.

Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

The Algorithm

- Phase 1: Allocate big indivisible goods.
- Phase 2: Allocate small indivisible goods and cake \widehat{C} :
 - $u_{i^*}(A_{i^*}) \geq \alpha \cdot \mathsf{MMS}_{i^*};$
 - **2** For each agent *j* remaining in *N*, $u_j(A_{i^*}) \leq MMS_j$.

				<>>	⊢ <mark>× ×</mark> – I	Utility	$lpha extsf{-MMS}$	(1-lpha) imes MMS
	0.5	0.5	0	0		0.5	0.375	0.125
-	0.9	0.2	0.3	0.6	1		0.75	0.25
-	1	0.2	0.1	0.7	1		0.75	0.25

Lemma (Bei, Liu, Lu, and Wang [2021])

Cake \widehat{C} is enough to be allocated during the algorithm's run.

Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

The Algorithm

- Phase 1: Allocate big indivisible goods.
- Phase 2: Allocate small indivisible goods and cake \widehat{C} :
 - $u_{i^*}(A_{i^*}) \geq \alpha \cdot \mathsf{MMS}_{i^*};$
 - **2** For each agent *j* remaining in *N*, $u_j(A_{i^*}) \leq MMS_j$.

				<>>	× ×	Utility	$lpha extsf{-MMS}$	(1-lpha) imes MMS
	0.5	0.5	0	0		0.5	0.375	0.125
-	0.9	0.2	0.3	0.6	⊢ −−1	0.75	0.75	0.25
-	1	0.2	0.1	0.7	1		0.75	0.25

Lemma (Bei, Liu, Lu, and Wang [2021])

Cake \widehat{C} is enough to be allocated during the algorithm's run.

Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

The Algorithm

- Phase 1: Allocate big indivisible goods.
- Phase 2: Allocate small indivisible goods and cake \widehat{C} :
 - $u_{i^*}(A_{i^*}) \geq \alpha \cdot \mathsf{MMS}_{i^*};$
 - **2** For each agent *j* remaining in *N*, $u_j(A_{i^*}) \leq MMS_j$.

				$\langle \!\!\!\!\!\!\!\!\rangle$	⊢ −−−−−	Utility	$lpha extsf{-MMS}$	(1-lpha) imes MMS
	0.5	0.5	0	0		0.5	0.375	0.125
	0.9	0.2	0.3	0.6		0.75	0.75	0.25
-	1	0.2	0.1	0.7	1		0.75	0.25

Lemma (Bei, Liu, Lu, and Wang [2021])

Cake \widehat{C} is enough to be allocated during the algorithm's run.

Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

The Algorithm

- Phase 1: Allocate big indivisible goods.
- Phase 2: Allocate small indivisible goods and cake \widehat{C} :
 - $u_{i^*}(A_{i^*}) \geq \alpha \cdot \mathsf{MMS}_{i^*};$
 - **2** For each agent *j* remaining in *N*, $u_j(A_{i^*}) \leq MMS_j$.

				$\langle \!\!\!\!\!\!\!\!\rangle$		Utility	$\alpha ext{-MMS}$	(1-lpha) imes MMS
	0.5	0.5	0	0		0.5	0.375	0.125
	0.9	0.2	0.3	0.6		0.75	0.75	0.25
-	1	0.2	0.1	0.7	HH	1.45	0.75	0.25

Lemma (Bei, Liu, Lu, and Wang [2021])

Cake \widehat{C} is enough to be allocated during the algorithm's run.

Xinhang Lu (UNSW Sydney)

Developments in Fair Division: Mixed Goods

The Algorithm

- Phase 1: Allocate big indivisible goods.
- Phase 2: Allocate small indivisible goods and cake \widehat{C} :
 - $u_{i^*}(A_{i^*}) \geq \alpha \cdot \mathsf{MMS}_{i^*};$
 - **2** For each agent *j* remaining in *N*, $u_j(A_{i^*}) \leq MMS_j$.

				$\langle \!\!\!\!\!\!\!\!\rangle$		Utility	lpha-MMS	(1-lpha) imes MMS
	0.5	0.5	0	0		0.5	0.375	0.125
	0.9	0.2	0.3	0.6		0.75	0.75	0.25
-	1	0.2	0.1	0.7	HH	1.45	0.75	0.25

Lemma (Bei, Liu, Lu, and Wang [2021])

Cake \widehat{C} is enough to be allocated during the algorithm's run.

Xinhang Lu (UNSW Sydney)

Algorithm for Heterogeneous Cake C

• Replace cake C with a homogeneous cake \widehat{C} such that

$$u_i(\widehat{C}) = u_i(C).$$

• Allocate the indivisible goods and homogeneous cake \widehat{C} using the previous algorithm. In other words, for each agent *i*, we have

$$u_i(M_i \cup \widehat{C}_i) = u_i(M_i) + u_i(\widehat{C}_i) \ge \alpha \cdot \mathsf{MMS}_i.$$

• Use an algorithm of Cseh and Fleiner [2020] to allocate cake C in the sense that

$$u_i(C_i) \geq u_i(\widehat{C}_i).$$

Algorithm for Heterogeneous Cake C

• Replace cake C with a homogeneous cake \widehat{C} such that

$$u_i(\widehat{C}) = u_i(C).$$

• Allocate the indivisible goods and homogeneous cake \widehat{C} using the previous algorithm. In other words, for each agent *i*, we have

$$u_i(M_i \cup \widehat{C}_i) = u_i(M_i) + u_i(\widehat{C}_i) \ge \alpha \cdot \mathsf{MMS}_i.$$

• Use an algorithm of Cseh and Fleiner [2020] to allocate cake C in the sense that

$$u_i(C_i) \geq u_i(\widehat{C}_i).$$

Algorithm for Heterogeneous Cake C

• Replace cake C with a homogeneous cake \widehat{C} such that

$$u_i(\widehat{C}) = u_i(C).$$

• Allocate the indivisible goods and homogeneous cake \widehat{C} using the previous algorithm. In other words, for each agent *i*, we have

$$u_i(M_i \cup \widehat{C}_i) = u_i(M_i) + u_i(\widehat{C}_i) \ge \alpha \cdot \mathsf{MMS}_i.$$

• Use an algorithm of Cseh and Fleiner [2020] to allocate cake C in the sense that

$$u_i(C_i) \geq u_i(\widehat{C}_i).$$

Wrap-Up

2 Envy-freeness for Mixed Goods (EFM)

Maximin Share (MMS) Guarantee

Resources

- Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, eds. [2016]. Handbook of Computational Social Choice. Cambridge University Press
- Ayumi Igarashi and Warut Suksompong [2019]. Fair Division of Indivisible Items: Asymptotics and Graph-Theoretic Approaches. Tutorial presented at IJCAI-19. URL: https://www.comp.nus.edu.sg/~warut/ijcai19-tutorial.html
- Rupert Freeman and Nisarg Shah [2020]. Recent Advances in Fair Resource Allocation. Tutorial presented at EC-19, AAAI-20, and AAMAS-20. URL: https://www.cs.toronto.edu/~nisarg/papers/Fair-Division-Tutorial.pdf
- Warut Suksompong [2021]. "Constraints in Fair Division". In: ACM SIGecom Exchanges 19.2, pp. 46-61. URL: https://www.sigecom.org/exchanges/volume_19/2/SUKSOMPONG.pdf
- Ayumi Igarashi and Warut Suksompong [2022]. Constraints in Fair Division. Tutorial presented at IJCAI-22. URL: https://www.comp.nus.edu.sg/~warut/ijcai22-tutorial.html
- Georgios Amanatidis, Haris Aziz, Georgios Birmpas, Aris Filos-Ratsikas, Bo Li, Hervé Moulin, Alexandros A. Voudouris, and Xiaowei Wu [2022]. Fair Division of Indivisible Goods: A Survey. arXiv preprint. URL: https://arxiv.org/abs/2208.08782v1

References I

- Alon, Noga (1987). "Splitting Necklaces". In: Advances in Mathematics 63.3, pp. 247–253.
- Amanatidis, Georgios, Evangelos Markakis, Afshin Nikzad, and Amin Saberi (2017). "Approximation Algorithms for Computing Maximin Share Allocations". In: *TALG* 13.4, 52.
- Aziz, Haris and Simon Mackenzie (2016). "A Discrete and Bounded Envy-Free Cake Cutting Protocol for Any Number of Agents". In: *Proc. FOCS*, pp. 416–427.
- Barman, Siddharth and Sanath Kumar Krishnamurthy (2020). "Approximation Algorithms for Maximin Fair Division". In: ACM Transactions on Economics and Computation 8.1, 5.
- Bei, Xiaohui, Zihao Li, Jinyan Liu, Shengxin Liu, and Xinhang Lu (2021). "Fair Division of Mixed Divisible and Indivisible Goods". In: Artificial Intelligence 293, 103436.
- Bei, Xiaohui, Shengxin Liu, Xinhang Lu, and Hongao Wang (2021). "Maximin Fairness with Mixed Divisible and Indivisible Goods". In: Autonomous Agents and Multi-Agent Systems 35.2, 34.
- Bhaskar, Umang, A. R. Sricharan, and Rohit Vaish (2021). "On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources". In: *Proc. APPROX*, 1:1–1:23.
- Budish, Eric (2011). "The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes". In: *Journal of Political Economy* 119.6, pp. 1061–1103.

References II

- Cseh, Ágnes and Tamás Fleiner (2020). "The Complexity of Cake Cutting with Unequal Shares". In: ACM Transactions on Algorithms 16.3, 29.
- Feige, Uriel, Ariel Sapir, and Laliv Tauber (2021). "A Tight Negative Example for MMS Fair Allocations". In: Proc. WINE, pp. 355–372.
- Garg, Jugal, Peter McGlaughlin, and Setareh Taki (2019). "Approximating Maximin Share Allocations". In: *Proc. SOSA*, 20:1–20:11.
- Garg, Jugal and Setareh Taki (2021). "An Improved Approximation Algorithm for Maximin Shares". In: Artificial Intelligence 300, 103547.
- Ghodsi, Mohammad, MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami (2021). "Fair Allocation of Indivisible Goods: Improvement". In: *Mathematics of Operations Research* 46.3, pp. 1038–1053.
- Kurokawa, David, Ariel D. Procaccia, and Junxing Wang (2018). "Fair Enough: Guaranteeing Approximate Maximin Shares". In: *Journal of the ACM* 65.2, 8.
- Lipton, Richard J., Evangelos Markakis, Elchanan Mossel, and Amin Saberi (2004). "On Approximately Fair Allocations of Indivisible Goods". In: *Proc. EC*, pp. 125–131.

Thank You!